您当前所在的位置:陕西钧测检测技术有限公司 > 公司动态 > 咸阳幼儿园房屋检测鉴定中心-权威机构

公司动态

咸阳幼儿园房屋检测鉴定中心-权威机构

关键词:

钢结构质量检测桥梁检测烟囱检测

2019/12/21


咸阳幼儿园房屋检测鉴定中心-权威机构

郭经理:18792942354(同微信号) 


直接点击上面号码拨打 


我们承接全国所有地区检测鉴定\加固设计\加固施工等业务 


钧测检测技术服务有限公司是从事房屋检测、结构监测、工程检测和评估鉴定的第三方检测机构。上海钧测拥有检验检测机构资质认定,以权威的专家团队,的检测设备和前沿的核心技术,为机构、设计、施工单位提供科学的决策依据、技术咨询和解决方案。 


业务范围: 


房屋质量检测、房屋抗震鉴定、厂房检测鉴定、工业建筑检测鉴定、玻璃幕墙检测、桥梁检测、工程检测、监测钢结构工程检测、焊接工艺评定、产品失效分析、热像检测、建筑物振动检测、地下管网检测鉴定、工业设备可靠性鉴定 







  

 

 

  

 房屋振动测试采用什么方法检测


  房屋振动测试是否可以做,采用什么方法检测等问题是很多电话咨询的业主们常问到的问题。今天在这里为大家一一讲解。首先为什么要做振动检测呢,当房屋产生振动时会导致很多居民居住心里上造成房屋不安全的想法。若房屋靠近马路,当马路上行车较多时或有大车经过时会导至房屋产生振动感。另外当房屋周边厂房内部有设备振动时,设备振动也会导致房屋产生振动。对于振动测试国家对比有相应的检测标准规范。振动测试通过现场布点,测量量为:频率1-80HZ范围内,1/3倍频程的铅垂向振动加速度级值,单位为分贝DB.


  振动测试测量位置及拾振器的安置是怎样的?


  1.振动测试中一个测点,测点置于住宅建筑室内地面中央或室内地面振动敏感处。


  2.振动测试时,应确保拾振器平稳地安放在平坦、坚实地面上。


  3.拾振器的灵敏度主轴方向应与地面或楼层地面的铅垂方向一致。振动测试的条件?振动测试时,仪器动态特性为快响应,采样时间间隔不大于1S,测量平均时间不少于1000S。


  测量过程中,应保持住宅建筑物内部的振源处于正常工作状态,并避免住宅建筑物外部各种振源和其他环境因素对振动测量的。


 

  房屋放重物后继续使用安全吗?


  很多时候人们想当然的以为在房屋楼板上放置些许荷载没有问题,直接放置就可以了,实则不然。正是因为很多人们的思想存着侥幸的心理导致房屋出现很多问题,比如楼板开裂,柱子开裂或房屋基础下沉。现在大多数房屋都是由框架结构柱、梁与楼板组成的,房屋的荷载是相互传递的。因此当楼板或房屋内部某平台上放置重大荷载时若重量过大超过房屋能够承受的荷载必然导致房屋出现问题。


  近日,我院房屋质量检测站成功为闵行区浦江镇某钢结构厂房进行钢结构平台承重结构检测项目。因该厂房面临房屋结构改造,房屋内需放置几台设备,业主方为了了解房屋结构现状及结构的安全性,同时也为了后续改造设计提供技术依据,拟委托对该房屋钢结构平台进行结构安全性检测鉴定及房屋复核图纸测绘工作,确保房屋安全的使用。房屋结构加固分类介绍建筑结构加固分为直接加固与间接加固两类。设计时,可根据实际条件和使用要求选择适宜的加固方法及配合使用的加固技术。房屋结构直接加固应根据工程的实际情况选用增大截面加固法、置换混凝土加固法或复合截面加固法。房屋结构间间加固应根据工程的实际情况选用体外预应力加固法、增设支点加固法、增设耗能支撑法或增设抗震墙法等。建筑工程结构加固改造中,与结构加固方法配合使用的技术应采用符合混凝土结构加固设计规范的裂缝修补技术、锚固技术和阻锈技术进行使用。房屋结构加固中针对局部进行加固时,应考虑原房屋剩余设计使用年限对结构加固后设计使用年限的影响。结构加固设计应明确结构加固后的用途。在加固设计使用年限内,未经技术鉴定或设计许可,不得以改变房屋加固后结构的用途和使用环境。



老旧建筑物需安全鉴定-市某标志性有年代历史的大钟掉落砸人昨日,网上发布,市某标志性有年代历史的大钟掉落将人砸伤。随后,新京报记者从市消防总队静安中队处证实,当天上午9时许,在静安寺有一人被落下的钟砸伤,随后送往医院抢救。华山医院急诊室的值班护士告诉记者,目前伤者接受完手术,已转移到ICU监护室。有网友发布微博并配图称,当晚看到静安寺的钟掉下。其发布的图片显示,一口大钟立在地上,钟口沿边的地上有血迹。一张聊天截图中提到,人被困在钟罩里,脚被砸断。但伤者身份及事故原因并不清楚。经抢救,目前人已经转移到ICU监护室。


  西安是国家历史文明的大都市,尤其是改革开放后这座城市经济与城市建设进行飞跃的高速发展车道。一座座高楼拔地而起,一座座具有标志性的古建筑物都代表着这座文化老城独具一格的特色。然而随着漫长岁月,很多老建筑物及具有代表性的古建筑物都呈现结构老化的趋势,相应的安全性隐患则隐藏其中,在不定时的时间中爆发出来。危及行人的安全。房屋在使用多年之后,混凝土强度会下降,钢筋出现锈蚀而导致钢筋强度下降,又是地处于软土区,房屋沉降与倾斜不断的出现,若房屋倾斜率日趋增大则房屋出现裂缝等损伤等种种问题,导致房屋结构出现破损,安全性使用性能下降。再者因是一座老城区房屋在使用过程中经过数次的改造与重装修,不良的改造方式对房屋原结构都造成不同程度的损伤。是座人流量非常大的城市特别是旅游景点及人流量集中的地方,房屋因在间隔时间段内应找市具有房屋结构检测资质的企业对房屋进行全面的安全体检,发现问题及时整改,避免不必要的安全事故出现。


  房屋外墙空鼓及饰面层粘结缺陷检测周期


    建筑外墙饰面层粘结缺陷的检测周期应符合哪些要求? 


  1.新建建筑物竣工后两年内,应针对其外墙饰面层的粘结缺陷进行第一次检测,以后每隔两个进行一次检测。


  2.既有建筑改建、扩建和综合整治工程中包括外墙整治项目的,应在工程完工后两年内针对其外墙饰面层的粘结缺陷进行第一次检测,以后每隔两年进行一次检测。


  3.竣工10年以上的既有建筑,对外墙饰面层的粘结缺陷应每隔两年进行一次检测。房屋外墙空鼓及饰面层粘结缺陷检测方法有外观目测法和局部锤击法,不论哪种房屋外墙检测方法都应严格按照红外热像法检测建筑外墙饰面层粘结缺陷的技术标准规范。


  玻璃幕墙现场动力测试评估幕墙施工质量玻璃幕墙由玻璃面板、铝合金付框、横梁及立柱组成一个结构体系,每城玻璃面板四周支承条件,在设计条件一致时,理论上相同。在面板和支承条件均相同的情况下,该部分面板自振频率相同,当面板四周结构耐候胶因施工质量差、施工不到位、发生老化等现象时,支承条件发生改变,玻璃面板自振频率就会发生相应变化。玻璃幕墙检测中玻璃面板的支承节点牢固情况是玻璃幕墙安全评价的关键点,玻璃幕墙节点为隐蔽工程,现场不便于拆卸检查,传统的检测方法又只能定性的对玻璃幕墙的安全性进行经验性的评价,借鉴于对玻璃幕墙支承边界的安全评价方法,结合弹性力学薄板振动理论和软件分析手段,可采用动测法测试玻璃面板的一阶自振频率,通过该频率的比较来定量的判定玻璃幕墙支承边界的安全程度。支承牢固的玻璃面板其频率较高,支承有松动、或板材有损坏的玻璃面板自振频率相对较低。只要采用仪器测得玻璃面板的自振频率,便可定量评价或比较玻璃面板的安全程度。玻璃幕墙现场动测试技术广泛应用于高层建筑幕墙大楼,当幕墙建筑高度超过50米以上,自身承载的风荷载会非常大,随着幕墙使用年代己久,面板及支承构件老化,极易出现坠落危险。公司幕墙动力测试己在全国广泛应用,帮助广大业主们解决幕墙存在的安全隐患。


  房屋结构加固工程如何进行?


    施工质量控制房屋结构加固工程应按下列规定进行施工质量控制:


  1.结构加固设计单位按审查批准的施工图,向施工单位进行技术交底,施工单位应据以编制施工组织设计和施工技术方案,经审查批准后组织实施。


  2.加固材料、产品应进行进场验收。凡涉及安全、卫生、环境保护的材料和产品应按建筑结构加固工程施工质量验收规范规定的抽样数量进行见证抽样奥特曼验。其送样应经监理工程签封,复验不合格的材料和产品不得使用,施工单位或生产厂家自行抽样、送检的委托检验报告无效。


  3.结构加固工程施工前,应对原结构、构件进行清理、修整和支护。


  4.结构加固工程的每道工序均应按本规范及企业的施工技术标准进行质量控制,每道工序完成后应进行检查验收,必要时尚应按隐蔽工程的要求进行检查验收,合格后方允许进行下一道工序的施工。


  5.相关各专业工种交接时,应进行交接检验,并应经监理工程师检查认可。


  房屋结构加固施工现场管理基本规定房屋结构加固工程中,对于结构加固工程施工现场质量管理,应有相应的施工技术标准、健全的质量管理体系、施工质量控制与质量检验质度以及综合评定施工质量水平的考核制度。建筑结构加固工作作为建筑工程的一个分部工程,应根据其加固材料种类和施工技术特点划分为若干子分部工程,每一子分部工程应按其主要工种、材料和施工工艺划分为若干分项工程,每一分项工程应按其施工过程控制和施工质量验收的需要划分为若干检验批。子分部工程和分项工程的具体划分应符合建筑结构加固工程施工质量验收规范的相关规定。


  

 

  

  


 

 



 某房屋火灾后安全性检测报告


  4 车间建筑、结构概况


  本次受检车间为一栋单层钢筋混凝土排架结构房屋,建造于。该车间平面呈矩形,东西向长为99.00m,南北向跨度为26.00m,建筑面积约为2702.83m2,室内外高差约为0.15m,檐口高度约为12.60m。受检车间的钢筋混凝土框架柱截面尺寸主要为400mm×700mm,该车间在标高6.50m及9.50m处均设有连系梁,截面尺寸主要为250mm×500mm,在标高7.95m处设有T型吊车梁,吊车梁的截面尺寸为T900mm×500mm×180mm×100mm。车间屋面采用马鞍板构件搭设,目前受灾严重区域马鞍板构件已经拆除,墙体为烧结普通砖和混合砂浆砌筑,墙体厚度为240mm,其中车间在11轴处设有变形缝。受检车间建筑图纸具备齐全,结构图纸缺失。车间外貌现状见附件1检测照片1~照片2,内景现状见附件1检测照片3~照片4,车间结构平面图详见附件2检测附图1。


  5 检测的目的、范围和内容


  5.1 检测目的


  受检车间位于,建造于。该车间于2019年1月14日0时19分左右发生火灾,导致该车间主体结构混凝土结构层剥落,表面疏松变色,屋面局部马鞍板坍塌,墙面粉刷层大面积脱落,表层砂浆疏松,车间内部设施基本烧毁。


  5.3 检测内容


  (1)调查火灾过程、燃烧范围、过火面积,通过现场残存材料的状态分析判断火灾现场的温度;


  (2)过火后结构损伤情况调查,调查混凝土表面色泽、锤击反应、混凝土剥落、露筋、表层混凝土疏松情况;


  (3)车间受检区域主体结构变形检测;


  (4)采用钻芯法抽样检测灾区混凝土强度;


  (5)对车间主体结构构件及围护结构进行初步鉴定评级,提交火灾损伤检测报告。


  6 火灾过程、燃烧范围、燃烧物、残存物调查


  6.2 燃烧物、残存物


  根据调查,车间的可燃物主要为化学原材料。火灾发生后,车间内的主体结构构件混凝土剥落,表面疏松变色,墙面粉刷层大面积脱落,表层砂浆疏松,屋面局部马鞍板坍塌,设备,原材料、工装模具、酸洗设备基本烧毁,受火灾影响较大,13-19/A-D轴区域为重灾区,9-13/A-D轴区域为轻灾区,其余轴区域未过火。


  7 现场检测情况


  7.1 车间损伤检测


  火灾的主要影响范围为生产车间9~19/A~D轴区域,其中13-19/A-D轴区域为重灾区,9-13/A-D轴区域为轻灾区。现场主要对9-19/A-D轴区域钢筋混凝土梁、柱的外观颜色、裂缝、锤击反应、混凝土剥落和露筋及墙体外观颜色、裂缝等情况进行了详细检测。经技术人员现场调查: 车间重灾区构件表面基本被黑色覆盖,钢筋混凝土构件部分呈浅灰色,局部浅黄,并伴有裂缝,锤击声音柱局部较闷,其余较响,梁部分较闷,其余较响,吊车梁局部发闷,其余较响,混凝土表面疏松、剥落,填充墙伴有大量破损,面层大面积脱落,表层砂浆疏松等现场。车间轻灾区构件表面大部分被黑色覆盖,钢筋混凝土构件11~13/A~D轴并伴有裂缝,锤击声音柱部分较闷,其余较闷,梁局部较闷,部分较响,其余响亮,吊车梁局部发闷,其余响亮,局部混凝土表面疏松、剥落,其中11/D轴柱伴有局部露筋等现场,填充墙面层轻微脱落等。车7.2 车间倾斜与沉降检测


  为明确受检车间目前实际倾斜情况,现场采用TCR1202+R400型全站仪对车间受检区域柱构件垂直度进行测量,


  上述测量结果表明,车间混凝土柱构件南北向最大侧向位移为向南18mm,部分测点侧向位移基本均超出《工业建筑可靠性鉴定标准》(GB50144-2008)表7.3.9规范限值≤H/1250。(注:柱构件垂直度测量包含施工误差)。


  7.3 车间相高差检测


  根据实际情况,本次检测采用TCR1202+R400型全站仪,车间选取设计处于同一水平面的牛腿进行相对高差检测,高于基准点为正值,低于基准点为负值。测量结果表明,房屋局部最大相对倾斜率为3.50‰,个别测点超出《建筑地基基础设计规范》(GB50007-2011)关于同类建筑结构相对倾斜的限值3‰(测量结果包含施工误差)。


  7.4 车间混凝土强度检测


  按照《钻芯法检测混凝土强度技术规程》(CECS03:2007),在受检车间主体结构上采用钻芯法取样,测试混凝土的强度。测试结果表明,车间重灾区混凝土梁强度28.4MPa~28.6MPa,平均值为28.5MPa,混凝土强度等级推定为C25;混凝土吊车梁强度33.1MPa~45.4MPa,平均值为39.9MPa,混凝土强度等级推定为C30;混凝土柱强度24.9MPa~42.7MPa,平均值为32.7MPa,混凝土强度等级推定为C25。车间轻灾区混凝土梁检测强度为25.2MPa;混凝土吊车梁检测强度41.1MPa;混凝土柱强度28.6MPa~33.0MPa,平均值为30.8MPa,混凝土强度等级推定为C25。


  8 火灾后损伤分析评估


  8.1 火场温度分析


  重灾区混凝土柱表面基本被黑色覆盖,部分浅灰,局部呈浅黄色,混凝土严重脱落,锤击声音较闷,贯穿裂缝,表层酥松,依据《火灾后建筑结构鉴定标准》(CECS 252:2009)判定重灾区的最高温度约为>800℃;轻灾区局部混凝土柱呈浅灰,局部脱落、开裂,锤击较闷且混凝土粉碎和塌落,依据《火灾后建筑结构鉴定标准》(CECS 252:2009)判定轻灾区的最高温度约为300℃~500℃。


  8.2 火灾对混凝土强度影响分析


  根据《火灾后建筑结构鉴定标准》(CECS 252:2009)及有关资料:在高温下及冷却后,混凝土的强度总体上都会有一定程度的降低,温度越高,混凝土强度降低越严重。现场对混凝土构件表面进行锤击或取芯时,受检区域部分构件面层发生剥落、酥松等现象。混凝土强度测试表明,车间混凝土构件强度推定度等级重灾区混凝土柱为C25,混凝土梁为C25,混凝土吊车梁为C30,轻灾区为混凝土柱检测强度为25.2MPa,混凝土梁检测强度为41.1MPa,混凝土吊车梁为C40;其中未过火构件19/A轴柱下部强度为42.7MPa,11~12/D轴吊车梁检测强度为41.1MPa,受灾区混凝土检测推定强度均小于未过火构件混凝土检测强度。


  8.3 构件鉴定评级


  根据《火灾后建筑结构鉴定标准》(CECS 252:2009),依据构件烧灼损伤、变形、开裂,火灾后构件初步鉴定评级可分为4类(火灾后结构构件损伤状态不评Ⅰ级):


  状态Ⅱa——轻微或未直接遭受烧灼作用,结构材料及结构性能未受或仅受轻微影响,可不采取措施或仅采取提高耐久性的措施。


  状态Ⅱb——轻度烧灼,未对结构材料及结构性能产生明显影响,尚不影响结构安全,应采取耐久性或局部处理外观修复措施。


  状态Ⅲ——中度烧灼,尚未破坏,显著影响结构材料或结构性能,明显变形或开裂,对结构安全性或正常使用性产生不利影响,应采取加固或局部更换措施。


  状态Ⅳ——破坏,火灾中或火灾后结构倒塌或构件塌落;结构严重烧灼损坏、变形损坏或开裂损坏,结构承载能力丧失或大部分丧失,危及结构安全,必须立即采取安全支护、彻底加固或拆除更换措施。


  根据受检区域混凝土构件表面的颜色、锤击反应、剥落情况、火灾后的混凝土强度及承重墙体表面颜色、裂缝对构件进行鉴定评级。


  9 结论与建议


  9.1 结论


  本次受检车间为一栋单层钢筋混凝土排架结构房屋,该车间平面呈矩形,东西向长为99.00m,南北向跨度为26.00m,建筑面积约为2702.83m2。该车间主要作为钢材进行酸洗作业车间使用。通过对车间9~19/A~D轴区域各构件的检测,得出以下结论:


  (2)检测结果表明,车间重灾区构件表面基本被黑色覆盖,钢筋混凝土构件部分呈浅灰色,局部浅黄,并伴有裂缝,锤击声音柱局部较闷,其余较响,梁部分较闷,其余较响,吊车梁局部发闷,其余较响,混凝土表面疏松、剥落,填充墙伴有大量破损,面层大面积脱落,表层砂浆疏松等现场。车间轻灾区构件表面大部分被黑色覆盖,钢筋混凝土构件11~13/A~D轴并伴有裂缝,锤击声音柱部分较闷,其余较闷,梁局部较闷,部分较响,其余响亮,吊车梁局部发闷,其余响亮,局部混凝土表面疏松、剥落,其中11/D轴柱伴有局部露筋等现场,填充墙面层轻微脱落等;


  (3)测量结果表明,车间局部最大相对倾斜率为3.50‰,个别测点超出相关规范要求;


  (4)测量结果表明,车间受检区域混凝土柱构件南北向最大侧向位移为向北18mm,部分测点侧向位移基本均超出相关规范要求;


  (5)钻芯法测试混凝土的强度测试结果表明,车间重灾区混凝土梁强度等级推定为C25,混凝土吊车梁强度等级推定为C30,混凝土柱强度等级推定为C25;车间轻灾区混凝土梁检测强度为25.2MPa,混凝土吊车梁检测强度为41.1MPa,混凝土柱强度等级推定为C25;


  (6)依据混凝土表面的颜色、锤击反应、剥落情况、火灾后的混凝土强度以及现场烧毁和残留物残留情况判断,火灾时混凝土表面重灾区最高温度>800℃,轻灾区最高温度约为300℃~500℃;


  (7)根据《火灾后建筑结构鉴定标准》(CECS 252:2009)判定,受检区域钢筋混凝土柱的初步鉴定评级为局部为Ⅱa,其余为Ⅲ和Ⅱb;钢筋混凝土梁初步鉴定评级为局部为Ⅱa,其余为Ⅲ和Ⅱb;钢筋混凝土吊车梁初步鉴定评级为局部为Ⅲ,其余为Ⅱb和Ⅱa;车间填充墙的初步鉴定评级为局部为Ⅱa,其余为Ⅲ。






 某房屋火灾后安全性检测报告


  4 车间建筑、结构概况


  本次受检车间为一栋单层钢筋混凝土排架结构房屋,建造于。该车间平面呈矩形,东西向长为99.00m,南北向跨度为26.00m,建筑面积约为2702.83m2,室内外高差约为0.15m,檐口高度约为12.60m。受检车间的钢筋混凝土框架柱截面尺寸主要为400mm×700mm,该车间在标高6.50m及9.50m处均设有连系梁,截面尺寸主要为250mm×500mm,在标高7.95m处设有T型吊车梁,吊车梁的截面尺寸为T900mm×500mm×180mm×100mm。车间屋面采用马鞍板构件搭设,目前受灾严重区域马鞍板构件已经拆除,墙体为烧结普通砖和混合砂浆砌筑,墙体厚度为240mm,其中车间在11轴处设有变形缝。受检车间建筑图纸具备齐全,结构图纸缺失。车间外貌现状见附件1检测照片1~照片2,内景现状见附件1检测照片3~照片4,车间结构平面图详见附件2检测附图1。


  5 检测的目的、范围和内容


  5.1 检测目的


  受检车间位于,建造于。该车间于2019年1月14日0时19分左右发生火灾,导致该车间主体结构混凝土结构层剥落,表面疏松变色,屋面局部马鞍板坍塌,墙面粉刷层大面积脱落,表层砂浆疏松,车间内部设施基本烧毁。


  5.3 检测内容


  (1)调查火灾过程、燃烧范围、过火面积,通过现场残存材料的状态分析判断火灾现场的温度;


  (2)过火后结构损伤情况调查,调查混凝土表面色泽、锤击反应、混凝土剥落、露筋、表层混凝土疏松情况;


  (3)车间受检区域主体结构变形检测;


  (4)采用钻芯法抽样检测灾区混凝土强度;


  (5)对车间主体结构构件及围护结构进行初步鉴定评级,提交火灾损伤检测报告。


  6 火灾过程、燃烧范围、燃烧物、残存物调查


  6.2 燃烧物、残存物


  根据调查,车间的可燃物主要为化学原材料。火灾发生后,车间内的主体结构构件混凝土剥落,表面疏松变色,墙面粉刷层大面积脱落,表层砂浆疏松,屋面局部马鞍板坍塌,设备,原材料、工装模具、酸洗设备基本烧毁,受火灾影响较大,13-19/A-D轴区域为重灾区,9-13/A-D轴区域为轻灾区,其余轴区域未过火。


  7 现场检测情况


  7.1 车间损伤检测


  火灾的主要影响范围为生产车间9~19/A~D轴区域,其中13-19/A-D轴区域为重灾区,9-13/A-D轴区域为轻灾区。现场主要对9-19/A-D轴区域钢筋混凝土梁、柱的外观颜色、裂缝、锤击反应、混凝土剥落和露筋及墙体外观颜色、裂缝等情况进行了详细检测。经技术人员现场调查: 车间重灾区构件表面基本被黑色覆盖,钢筋混凝土构件部分呈浅灰色,局部浅黄,并伴有裂缝,锤击声音柱局部较闷,其余较响,梁部分较闷,其余较响,吊车梁局部发闷,其余较响,混凝土表面疏松、剥落,填充墙伴有大量破损,面层大面积脱落,表层砂浆疏松等现场。车间轻灾区构件表面大部分被黑色覆盖,钢筋混凝土构件11~13/A~D轴并伴有裂缝,锤击声音柱部分较闷,其余较闷,梁局部较闷,部分较响,其余响亮,吊车梁局部发闷,其余响亮,局部混凝土表面疏松、剥落,其中11/D轴柱伴有局部露筋等现场,填充墙面层轻微脱落等。车7.2 车间倾斜与沉降检测


  为明确受检车间目前实际倾斜情况,现场采用TCR1202+R400型全站仪对车间受检区域柱构件垂直度进行测量,


  上述测量结果表明,车间混凝土柱构件南北向最大侧向位移为向南18mm,部分测点侧向位移基本均超出《工业建筑可靠性鉴定标准》(GB50144-2008)表7.3.9规范限值≤H/1250。(注:柱构件垂直度测量包含施工误差)。


  7.3 车间相高差检测


  根据实际情况,本次检测采用TCR1202+R400型全站仪,车间选取设计处于同一水平面的牛腿进行相对高差检测,高于基准点为正值,低于基准点为负值。测量结果表明,房屋局部最大相对倾斜率为3.50‰,个别测点超出《建筑地基基础设计规范》(GB50007-2011)关于同类建筑结构相对倾斜的限值3‰(测量结果包含施工误差)。


  7.4 车间混凝土强度检测


  按照《钻芯法检测混凝土强度技术规程》(CECS03:2007),在受检车间主体结构上采用钻芯法取样,测试混凝土的强度。测试结果表明,车间重灾区混凝土梁强度28.4MPa~28.6MPa,平均值为28.5MPa,混凝土强度等级推定为C25;混凝土吊车梁强度33.1MPa~45.4MPa,平均值为39.9MPa,混凝土强度等级推定为C30;混凝土柱强度24.9MPa~42.7MPa,平均值为32.7MPa,混凝土强度等级推定为C25。车间轻灾区混凝土梁检测强度为25.2MPa;混凝土吊车梁检测强度41.1MPa;混凝土柱强度28.6MPa~33.0MPa,平均值为30.8MPa,混凝土强度等级推定为C25。


  8 火灾后损伤分析评估


  8.1 火场温度分析


  重灾区混凝土柱表面基本被黑色覆盖,部分浅灰,局部呈浅黄色,混凝土严重脱落,锤击声音较闷,贯穿裂缝,表层酥松,依据《火灾后建筑结构鉴定标准》(CECS 252:2009)判定重灾区的最高温度约为>800℃;轻灾区局部混凝土柱呈浅灰,局部脱落、开裂,锤击较闷且混凝土粉碎和塌落,依据《火灾后建筑结构鉴定标准》(CECS 252:2009)判定轻灾区的最高温度约为300℃~500℃。


  8.2 火灾对混凝土强度影响分析


  根据《火灾后建筑结构鉴定标准》(CECS 252:2009)及有关资料:在高温下及冷却后,混凝土的强度总体上都会有一定程度的降低,温度越高,混凝土强度降低越严重。现场对混凝土构件表面进行锤击或取芯时,受检区域部分构件面层发生剥落、酥松等现象。混凝土强度测试表明,车间混凝土构件强度推定度等级重灾区混凝土柱为C25,混凝土梁为C25,混凝土吊车梁为C30,轻灾区为混凝土柱检测强度为25.2MPa,混凝土梁检测强度为41.1MPa,混凝土吊车梁为C40;其中未过火构件19/A轴柱下部强度为42.7MPa,11~12/D轴吊车梁检测强度为41.1MPa,受灾区混凝土检测推定强度均小于未过火构件混凝土检测强度。


  8.3 构件鉴定评级


  根据《火灾后建筑结构鉴定标准》(CECS 252:2009),依据构件烧灼损伤、变形、开裂,火灾后构件初步鉴定评级可分为4类(火灾后结构构件损伤状态不评Ⅰ级):


  状态Ⅱa——轻微或未直接遭受烧灼作用,结构材料及结构性能未受或仅受轻微影响,可不采取措施或仅采取提高耐久性的措施。


  状态Ⅱb——轻度烧灼,未对结构材料及结构性能产生明显影响,尚不影响结构安全,应采取耐久性或局部处理外观修复措施。


  状态Ⅲ——中度烧灼,尚未破坏,显著影响结构材料或结构性能,明显变形或开裂,对结构安全性或正常使用性产生不利影响,应采取加固或局部更换措施。


  状态Ⅳ——破坏,火灾中或火灾后结构倒塌或构件塌落;结构严重烧灼损坏、变形损坏或开裂损坏,结构承载能力丧失或大部分丧失,危及结构安全,必须立即采取安全支护、彻底加固或拆除更换措施。


  根据受检区域混凝土构件表面的颜色、锤击反应、剥落情况、火灾后的混凝土强度及承重墙体表面颜色、裂缝对构件进行鉴定评级。


  9 结论与建议


  9.1 结论


  本次受检车间为一栋单层钢筋混凝土排架结构房屋,该车间平面呈矩形,东西向长为99.00m,南北向跨度为26.00m,建筑面积约为2702.83m2。该车间主要作为钢材进行酸洗作业车间使用。通过对车间9~19/A~D轴区域各构件的检测,得出以下结论:


  (2)检测结果表明,车间重灾区构件表面基本被黑色覆盖,钢筋混凝土构件部分呈浅灰色,局部浅黄,并伴有裂缝,锤击声音柱局部较闷,其余较响,梁部分较闷,其余较响,吊车梁局部发闷,其余较响,混凝土表面疏松、剥落,填充墙伴有大量破损,面层大面积脱落,表层砂浆疏松等现场。车间轻灾区构件表面大部分被黑色覆盖,钢筋混凝土构件11~13/A~D轴并伴有裂缝,锤击声音柱部分较闷,其余较闷,梁局部较闷,部分较响,其余响亮,吊车梁局部发闷,其余响亮,局部混凝土表面疏松、剥落,其中11/D轴柱伴有局部露筋等现场,填充墙面层轻微脱落等;


  (3)测量结果表明,车间局部最大相对倾斜率为3.50‰,个别测点超出相关规范要求;


  (4)测量结果表明,车间受检区域混凝土柱构件南北向最大侧向位移为向北18mm,部分测点侧向位移基本均超出相关规范要求;


  (5)钻芯法测试混凝土的强度测试结果表明,车间重灾区混凝土梁强度等级推定为C25,混凝土吊车梁强度等级推定为C30,混凝土柱强度等级推定为C25;车间轻灾区混凝土梁检测强度为25.2MPa,混凝土吊车梁检测强度为41.1MPa,混凝土柱强度等级推定为C25;


  (6)依据混凝土表面的颜色、锤击反应、剥落情况、火灾后的混凝土强度以及现场烧毁和残留物残留情况判断,火灾时混凝土表面重灾区最高温度>800℃,轻灾区最高温度约为300℃~500℃;


  (7)根据《火灾后建筑结构鉴定标准》(CECS 252:2009)判定,受检区域钢筋混凝土柱的初步鉴定评级为局部为Ⅱa,其余为Ⅲ和Ⅱb;钢筋混凝土梁初步鉴定评级为局部为Ⅱa,其余为Ⅲ和Ⅱb;钢筋混凝土吊车梁初步鉴定评级为局部为Ⅲ,其余为Ⅱb和Ⅱa;车间填充墙的初步鉴定评级为局部为Ⅱa,其余为Ⅲ。






联系我们更多
陕西钧测检测技术有限公司
地址:陕西省西安市未央区百寰国际1栋1905室
联系人:武彤
电话:15021135843
网上有害信息举报
x

填写举报信息

提示:请填写您的实名信息,中国114黄页承诺对您的信息进行保密