您当前所在的位置:陕西钧测检测技术有限公司 > 公司动态 > 西安培训班房屋检测鉴定中心-技术可靠

公司动态

西安培训班房屋检测鉴定中心-技术可靠

关键词:

钢结构质量检测桥梁检测房屋完损检测

2019/12/20




西安培训班房屋检测鉴定中心-技术可靠


郭经理:18792942354(同微信号) 


直接点击上面号码拨打 


我们承接全国所有地区检测鉴定\加固设计\加固施工等业务 


钧测检测技术服务有限公司是从事房屋检测、结构监测、工程检测和评估鉴定的第三方检测机构。上海钧测拥有检验检测机构资质认定,以权威的专家团队,的检测设备和前沿的核心技术,为机构、设计、施工单位提供科学的决策依据、技术咨询和解决方案。 


业务范围: 


房屋质量检测、房屋抗震鉴定、厂房检测鉴定、工业建筑检测鉴定、玻璃幕墙检测、桥梁检测、工程检测、监测钢结构工程检测、焊接工艺评定、产品失效分析、热像检测、建筑物振动检测、地下管网检测鉴定、工业设备可靠性鉴定 





  


 



  固碳纤维布加固法是近年来在工程加固领域兴起并广泛应用的新型加固技术。碳纤维布本身高强的性能及便捷的操作性能使得它越来越受到加固人的青睐。然而,近日听到有人说,凡是粘钢加固的工程完全可以用碳纤维布加固来代替?这其实是一种错误的说法。虽然两者有很多相似之处,但是在加固应用上还是有所区别的。现在,小悍就和大家一起来认识一下:碳纤维布加固和粘钢加固的适用性。


  一、粘贴碳纤维布和粘钢加固原理相同


  粘贴碳纤维布和粘钢加固法是利用树脂类胶结材料将碳纤维布或钢板粘贴于结构表面,并与结构形成整体受力体系,增强被加固结构的抗弯或抗剪能力,从而达到对结构加固补强及改善结构受力性能的目的。


  二、粘贴碳纤维布和粘钢加固的主要优缺点


  粘贴碳纤维布和粘钢方法作为加固技术中的妹方法,具有相似的主要优缺点。


  1.主要优点


  坚固耐用;施工快速;简洁轻巧,不损伤原结构,不改变结构外观,现场无湿作业,结构自重增加极微,不会导致建筑物 内其他构件的连锁加固;灵活多样;经济效益较高。


  2.主要缺点


  施工受环境条件限制,环境温度不超过60℃,粘贴时湿度不超过70%,无化学腐蚀环境,否则应采取措施;使用过程中耐高温和耐火性能差。


  三、粘贴碳纤维布和粘钢加固各有优劣


  粘贴碳纤维布轻质高强,常用碳纤维布的自重仅为200~300g/m2,设计厚度为0.111~0.167mm,抗拉强度高,为普通钢材的8~10倍,但各向异性,即抗拉强度高但抗剪强度低;施工更为简便,施工速度为粘钢的2~3倍。


  粘钢钢板的物理力学性能为各项同性,受力性能好;施工时需专用夹具和施工机具,施工工序和施工操作性较碳纤维布复杂。


  四、粘贴碳纤维布和粘钢的适用性对比


  粘钢时钢板厚度2~5mm,不应超过2层;粘贴碳纤维布时布厚度0.111~0.167mm,不宜超过4层;根据市场调查,一般粘钢价格(按粘贴面积计算)约为粘贴碳纤维布价格的2~3倍。下面就粘贴碳纤维布和粘钢的适用性进行对比分析讨论。


  1.抗弯加固


  以高强度I级碳纤维布为例,钢板与碳纤维布按抗弯加固等强换算结果见表1。


  表1钢板与碳纤维布抗弯加固等强换算结果表(单位:mm)


  钢板与碳纤维布抗剪加固等强换算结果表


  对于粘贴多层(2~4层)碳纤维布加固时,碳纤维布总厚度应乘以折减系数km=1.16-nfEftf/308000≤0.90,计算结果如下: 0.111mm厚碳纤维布km(2、3、4层)=0.90、0.90、0.81 0.167mm厚碳纤维布km(2、3、4层)=0.90、0.77、0.64


  粘贴1~4层碳纤维布与钢板等强换算结果见表1。 从表1中数据分析可得: (1)1层碳纤维布折算Q235钢板厚度0.83~1.79mm,折算Q345钢板厚度0.57~1.24mm;当结构补强所需面积较小,1层碳纤维布满足结构承载力需要时,推荐选用碳纤维布加固方案,经济性和可操作性优势明显,此时选用粘钢加固法将大幅度增加工程造价和施工工期。


  (2)2层碳纤维布折算Q235钢板厚度1.49~3.22mm,折算Q345钢板厚度1.03~2.23mm;当结构补强所需面积一般,2层碳纤维布满足结构承载力需要时,宜优先选用碳纤维布加固方案,经济性和可操作性有一定优势,而此时选用粘钢加固法的工程造价和施工工期略高于碳纤维布,为增加结构的安全性也可选用粘钢加固方案。


  (3)3层碳纤维布折算Q235钢板厚度2.24~4.13mm,折算Q345钢板厚度1.54~2.86mm;当结构补强所需面积稍大,3层碳纤维布满足结构承载力需要时,粘贴碳纤维布法的经济性和可操作性优势不明显,而粘钢加固法更灵活,宜优先选用粘钢加固方案。


  (4)4层碳纤维布折算Q235钢板厚度2.69~4.58mm,折算Q345钢板厚度1.85~3.17mm;当结构补强所需面积较大,4层(根据km可以得出,粘贴碳纤维布层数不宜超过4层)及4层以上碳纤维布满足结构承载力需要时,粘钢加固法更具经济性和施工操作性,推荐选用粘钢加固方案。


  2.抗剪加固


  以高强度I级碳纤维布为例, 钢板与碳纤维布按抗剪加固等强换算结果见表2。


  表2钢板与碳纤维布抗剪加固等强换算结果表(单位:mm)


  钢板与碳纤维布抗剪加固等强换算结果表


  同上,对于粘贴多层碳纤维布加固时,碳纤维布总厚度尚应乘以折减系数km。 根据表2数据分析可得: (1)1层碳纤维布折算Q235钢板厚度0.23 (0.46)~0.50(1.00)mm,折算Q345钢板厚度0.16(0.32)~0.35(0.69)mm,由此可见,抗剪加固时粘钢加固法的经济性和适用性明显优于粘贴碳纤维布,这是由于碳纤维布为各向异性材料,抗拉强度高但抗剪强度低,因此《混凝土结构加固设计规范》(GB50367-2006)中实行强度折减,折减系数为0.28或0.56。


  (2)数据表明,只有当抗剪加固构件斜截面抗剪需补足的箍筋面积较小,粘贴1~2层碳纤维布即可满足要求时,方可优先选用粘贴碳纤维布加固方案,其使用范围大幅受限。


  房屋安全性鉴定


  房屋安全性鉴定适用于已发现安全隐患危险迹象或其他需要评定安全性等级的房屋。


  检测项目:检查房屋结构、装修和设备的完损状况,确定房屋完损等级。


  适用范围:房屋评估、房屋管理等需要确定房屋完损程度的房屋。


  检测内容:主要检测参数有:


  现场检测:倾斜、沉降、裂缝、地基基础、砌体结构构件、木结构构件、混凝土结构构件、钢结构构件等。


  非现场检测项目有:


  a.混凝土结构构件检测中,混凝土钻芯法检测混凝土强度;


  b.钢结构构件检测中,钢材抗拉强度试验法检测钢材试件抗拉强度,钢材弯曲强度试验方法检测钢材试件弯曲变形能力。


  c.木结构构件检测中,木材顺纹抗压、抗拉、抗剪强度试验,木材抗弯强度及弹性模量试验,木材横纹抗压强度试验。


  检测过程:


 

  

  


 






某房屋火灾后安全性检测报告


  4 车间建筑、结构概况


  本次受检车间为一栋单层钢筋混凝土排架结构房屋,建造于。该车间平面呈矩形,东西向长为99.00m,南北向跨度为26.00m,建筑面积约为2702.83m2,室内外高差约为0.15m,檐口高度约为12.60m。受检车间的钢筋混凝土框架柱截面尺寸主要为400mm×700mm,该车间在标高6.50m及9.50m处均设有连系梁,截面尺寸主要为250mm×500mm,在标高7.95m处设有T型吊车梁,吊车梁的截面尺寸为T900mm×500mm×180mm×100mm。车间屋面采用马鞍板构件搭设,目前受灾严重区域马鞍板构件已经拆除,墙体为烧结普通砖和混合砂浆砌筑,墙体厚度为240mm,其中车间在11轴处设有变形缝。受检车间建筑图纸具备齐全,结构图纸缺失。车间外貌现状见附件1检测照片1~照片2,内景现状见附件1检测照片3~照片4,车间结构平面图详见附件2检测附图1。


  5 检测的目的、范围和内容


  5.1 检测目的


  受检车间位于,建造于。该车间于2019年1月14日0时19分左右发生火灾,导致该车间主体结构混凝土结构层剥落,表面疏松变色,屋面局部马鞍板坍塌,墙面粉刷层大面积脱落,表层砂浆疏松,车间内部设施基本烧毁。


  5.3 检测内容


  (1)调查火灾过程、燃烧范围、过火面积,通过现场残存材料的状态分析判断火灾现场的温度;


  (2)过火后结构损伤情况调查,调查混凝土表面色泽、锤击反应、混凝土剥落、露筋、表层混凝土疏松情况;


  (3)车间受检区域主体结构变形检测;


  (4)采用钻芯法抽样检测灾区混凝土强度;


  (5)对车间主体结构构件及围护结构进行初步鉴定评级,提交火灾损伤检测报告。


  6 火灾过程、燃烧范围、燃烧物、残存物调查


  6.2 燃烧物、残存物


  根据调查,车间的可燃物主要为化学原材料。火灾发生后,车间内的主体结构构件混凝土剥落,表面疏松变色,墙面粉刷层大面积脱落,表层砂浆疏松,屋面局部马鞍板坍塌,设备,原材料、工装模具、酸洗设备基本烧毁,受火灾影响较大,13-19/A-D轴区域为重灾区,9-13/A-D轴区域为轻灾区,其余轴区域未过火。


  7 现场检测情况


  7.1 车间损伤检测


  火灾的主要影响范围为生产车间9~19/A~D轴区域,其中13-19/A-D轴区域为重灾区,9-13/A-D轴区域为轻灾区。现场主要对9-19/A-D轴区域钢筋混凝土梁、柱的外观颜色、裂缝、锤击反应、混凝土剥落和露筋及墙体外观颜色、裂缝等情况进行了详细检测。经技术人员现场调查: 车间重灾区构件表面基本被黑色覆盖,钢筋混凝土构件部分呈浅灰色,局部浅黄,并伴有裂缝,锤击声音柱局部较闷,其余较响,梁部分较闷,其余较响,吊车梁局部发闷,其余较响,混凝土表面疏松、剥落,填充墙伴有大量破损,面层大面积脱落,表层砂浆疏松等现场。车间轻灾区构件表面大部分被黑色覆盖,钢筋混凝土构件11~13/A~D轴并伴有裂缝,锤击声音柱部分较闷,其余较闷,梁局部较闷,部分较响,其余响亮,吊车梁局部发闷,其余响亮,局部混凝土表面疏松、剥落,其中11/D轴柱伴有局部露筋等现场,填充墙面层轻微脱落等。车7.2 车间倾斜与沉降检测


  为明确受检车间目前实际倾斜情况,现场采用TCR1202+R400型全站仪对车间受检区域柱构件垂直度进行测量,


  上述测量结果表明,车间混凝土柱构件南北向最大侧向位移为向南18mm,部分测点侧向位移基本均超出《工业建筑可靠性鉴定标准》(GB50144-2008)表7.3.9规范限值≤H/1250。(注:柱构件垂直度测量包含施工误差)。


  7.3 车间相高差检测


  根据实际情况,本次检测采用TCR1202+R400型全站仪,车间选取设计处于同一水平面的牛腿进行相对高差检测,高于基准点为正值,低于基准点为负值。测量结果表明,房屋局部最大相对倾斜率为3.50‰,个别测点超出《建筑地基基础设计规范》(GB50007-2011)关于同类建筑结构相对倾斜的限值3‰(测量结果包含施工误差)。


  7.4 车间混凝土强度检测


  按照《钻芯法检测混凝土强度技术规程》(CECS03:2007),在受检车间主体结构上采用钻芯法取样,测试混凝土的强度。测试结果表明,车间重灾区混凝土梁强度28.4MPa~28.6MPa,平均值为28.5MPa,混凝土强度等级推定为C25;混凝土吊车梁强度33.1MPa~45.4MPa,平均值为39.9MPa,混凝土强度等级推定为C30;混凝土柱强度24.9MPa~42.7MPa,平均值为32.7MPa,混凝土强度等级推定为C25。车间轻灾区混凝土梁检测强度为25.2MPa;混凝土吊车梁检测强度41.1MPa;混凝土柱强度28.6MPa~33.0MPa,平均值为30.8MPa,混凝土强度等级推定为C25。


  8 火灾后损伤分析评估


  8.1 火场温度分析


  重灾区混凝土柱表面基本被黑色覆盖,部分浅灰,局部呈浅黄色,混凝土严重脱落,锤击声音较闷,贯穿裂缝,表层酥松,依据《火灾后建筑结构鉴定标准》(CECS 252:2009)判定重灾区的最高温度约为>800℃;轻灾区局部混凝土柱呈浅灰,局部脱落、开裂,锤击较闷且混凝土粉碎和塌落,依据《火灾后建筑结构鉴定标准》(CECS 252:2009)判定轻灾区的最高温度约为300℃~500℃。


  8.2 火灾对混凝土强度影响分析


  根据《火灾后建筑结构鉴定标准》(CECS 252:2009)及有关资料:在高温下及冷却后,混凝土的强度总体上都会有一定程度的降低,温度越高,混凝土强度降低越严重。现场对混凝土构件表面进行锤击或取芯时,受检区域部分构件面层发生剥落、酥松等现象。混凝土强度测试表明,车间混凝土构件强度推定度等级重灾区混凝土柱为C25,混凝土梁为C25,混凝土吊车梁为C30,轻灾区为混凝土柱检测强度为25.2MPa,混凝土梁检测强度为41.1MPa,混凝土吊车梁为C40;其中未过火构件19/A轴柱下部强度为42.7MPa,11~12/D轴吊车梁检测强度为41.1MPa,受灾区混凝土检测推定强度均小于未过火构件混凝土检测强度。


  8.3 构件鉴定评级


  根据《火灾后建筑结构鉴定标准》(CECS 252:2009),依据构件烧灼损伤、变形、开裂,火灾后构件初步鉴定评级可分为4类(火灾后结构构件损伤状态不评Ⅰ级):


  状态Ⅱa——轻微或未直接遭受烧灼作用,结构材料及结构性能未受或仅受轻微影响,可不采取措施或仅采取提高耐久性的措施。


  状态Ⅱb——轻度烧灼,未对结构材料及结构性能产生明显影响,尚不影响结构安全,应采取耐久性或局部处理外观修复措施。


  状态Ⅲ——中度烧灼,尚未破坏,显著影响结构材料或结构性能,明显变形或开裂,对结构安全性或正常使用性产生不利影响,应采取加固或局部更换措施。


  状态Ⅳ——破坏,火灾中或火灾后结构倒塌或构件塌落;结构严重烧灼损坏、变形损坏或开裂损坏,结构承载能力丧失或大部分丧失,危及结构安全,必须立即采取安全支护、彻底加固或拆除更换措施。


  根据受检区域混凝土构件表面的颜色、锤击反应、剥落情况、火灾后的混凝土强度及承重墙体表面颜色、裂缝对构件进行鉴定评级。


  9 结论与建议


  9.1 结论


  本次受检车间为一栋单层钢筋混凝土排架结构房屋,该车间平面呈矩形,东西向长为99.00m,南北向跨度为26.00m,建筑面积约为2702.83m2。该车间主要作为钢材进行酸洗作业车间使用。通过对车间9~19/A~D轴区域各构件的检测,得出以下结论:


  (2)检测结果表明,车间重灾区构件表面基本被黑色覆盖,钢筋混凝土构件部分呈浅灰色,局部浅黄,并伴有裂缝,锤击声音柱局部较闷,其余较响,梁部分较闷,其余较响,吊车梁局部发闷,其余较响,混凝土表面疏松、剥落,填充墙伴有大量破损,面层大面积脱落,表层砂浆疏松等现场。车间轻灾区构件表面大部分被黑色覆盖,钢筋混凝土构件11~13/A~D轴并伴有裂缝,锤击声音柱部分较闷,其余较闷,梁局部较闷,部分较响,其余响亮,吊车梁局部发闷,其余响亮,局部混凝土表面疏松、剥落,其中11/D轴柱伴有局部露筋等现场,填充墙面层轻微脱落等;


  (3)测量结果表明,车间局部最大相对倾斜率为3.50‰,个别测点超出相关规范要求;


  (4)测量结果表明,车间受检区域混凝土柱构件南北向最大侧向位移为向北18mm,部分测点侧向位移基本均超出相关规范要求;


  (5)钻芯法测试混凝土的强度测试结果表明,车间重灾区混凝土梁强度等级推定为C25,混凝土吊车梁强度等级推定为C30,混凝土柱强度等级推定为C25;车间轻灾区混凝土梁检测强度为25.2MPa,混凝土吊车梁检测强度为41.1MPa,混凝土柱强度等级推定为C25;


  (6)依据混凝土表面的颜色、锤击反应、剥落情况、火灾后的混凝土强度以及现场烧毁和残留物残留情况判断,火灾时混凝土表面重灾区最高温度>800℃,轻灾区最高温度约为300℃~500℃;


  (7)根据《火灾后建筑结构鉴定标准》(CECS 252:2009)判定,受检区域钢筋混凝土柱的初步鉴定评级为局部为Ⅱa,其余为Ⅲ和Ⅱb;钢筋混凝土梁初步鉴定评级为局部为Ⅱa,其余为Ⅲ和Ⅱb;钢筋混凝土吊车梁初步鉴定评级为局部为Ⅲ,其余为Ⅱb和Ⅱa;车间填充墙的初步鉴定评级为局部为Ⅱa,其余为Ⅲ。







  某公司火灾后损伤状况检测报告


  4 厂房建筑、结构概况


  本次受检厂房为一栋五层房屋,其中一至四层为钢筋混凝土框架结构房屋,五层为砖混结构,建造于2011年。该厂房平面呈矩形,东西向长为42.00m,南北向宽为28.00m,建筑面积约为4704.00m2,室内外高差约为0.15m,檐口高度约为20.00m。受检厂房的设计单位为,建设单位与施工单位均不详,该厂房火灾前主要作为办公、生产、储备场所使用。


  受检厂房一至四层结构形式为混凝土框架结构,五层为砖混结构。厂房东西方向共6列柱,柱距均为7.00m,南北方向共4跨,跨度均为7.00m;厂房框架柱截面尺寸主要为500mm×500mm,框架梁截面尺寸主要为240mm×600mm与240mm×670mm;房屋楼屋面板均为现浇混凝土板,板厚为120mm;房屋填充墙与承重墙均为混凝土小型空心砌块和混合砂浆砌筑,墙体厚度为240mm。厂房主体结构混凝土设计强度等级均为C30;目前受灾严重区域部分填充墙构件已经拆除,受检厂房结构图纸部分缺失,暂无建筑图纸。


  5 检测的目的、范围和内容


  5.1 检测目的


  受检厂房位于,建造于年。该厂房发生火灾,导致该厂房二层和三层部分结构构件混凝土剥落,表面疏松变色,局部构件大面积裸露钢筋,墙面粉刷层大面积开裂,脱落,表层砂浆疏松,厂房内部设施基本烧毁。为了解该厂房灾后受损情况,特委托对厂房进行火灾后检测,为后续厂房处置提供技术依据。


  5.3 检测内容


  (1)调查火灾过程、燃烧范围、过火面积,通过现场残存材料的状态分析判断火灾现场的温度;


  (2)过火后结构损伤情况调查,调查混凝土表面色泽、锤击反应、混凝土剥落、露筋、表层混凝土疏松情况;


  (3)受检厂房结构变形检测;


  (4)采用钻芯法抽样检测灾区混凝土强度;


  (5)对受检厂房结构进行初步鉴定评级,提交火灾损伤检测报告。


  6 火灾过程、燃烧范围、燃烧物、残存物调查


  6.1 火灾过程、燃烧范围调查


  火灾持续时间约为2个小时,起火部位处于厂房二层2~3/C~D轴区域,起火原因为含苯成分可燃气体触遇火源爆燃。根据现场调查,火灾导致了该厂房受灾区结构构件混凝土剥落,表面疏松变色,局部构件大面积裸露受力钢筋,墙面粉刷层大面积开裂,脱落,表层砂浆疏松,厂房内部设施基本烧毁等;厂房的主要过火面积约1760.00m2,其中重灾区为二层1~4/A~E轴(不包括楼梯间)以及三层1~4/A~E轴(不包括楼梯间),轻灾区为二层4~7/A~E(包括2~3层楼梯间及1层与4层楼梯间及电梯井)轴,其余部位为未过火区。分区图详见图6.1~6.5。


  6.2 燃烧物、残存物


  根据调查,厂房的可燃物主要为砂纸原材料,纸盒产品等。火灾发生后,该厂房受灾区结构构件混凝土剥落,表面疏松变色,局部构件大面积裸露受力钢筋,墙面粉刷层大面积开裂,脱落,表层砂浆疏松,厂房内部设施基本烧毁,其中重灾区为二层1~4/A~E轴(不包括楼梯间)以及三层1~4/A~E轴(不包括楼梯间),轻灾区为二层4~7/A~E(包括2~3层楼梯间及1层与4层楼梯间及电梯井)轴,其余部位为未过火区。根据本次现场调查及检测,厂房一层及二层已初步清理,现场残存物情况见表6.1。


  7 现场检测情况


  7.1 厂房损伤检测


  火灾的主要影响范围为,其中重灾区为二层1~4/A~E轴(不包括楼梯间)以及三层1~4/A~E轴(不包括楼梯间),轻灾区为二层4~7/A~E轴(包括2~3层楼梯间及1层与4层楼梯间及电梯井),其余部位为未过火区。现场主要对钢筋混凝土梁、柱的外观颜色、裂缝、锤击反应、混凝土剥落和露筋及墙体外观颜色、裂缝等情况进行了详细检测。经技术人员现场调查:厂房重灾区构件表面大部分被熏黑,钢筋混凝土构件部分呈浅灰色,局部浅黄,并伴有裂缝,主体构件锤击声音局部较闷,部分混凝土表面疏松、剥落,填充墙伴有大量破损,面层大面积脱落起皮,表层砂浆疏松,塑料板隔墙基本烧毁变形,局部烧光等。厂房轻灾区构件表面部分被熏黑,钢筋混凝土构件粉刷层伴有开裂,主体构件锤击声音基本较响,局部混凝土表面疏松、剥落;填充墙面层轻微脱落,塑料板隔墙局部现场拆除,其余基本完好等。厂区未过火区粉刷层起皮,局部脱落,墙体具有贯通裂缝,混凝土表面局部被熏黑,其余基本未变色,基本设施基本良好。


  7.2 厂房倾斜与沉降检测


  为明确受检厂房目前实际倾斜情况,现场采用TCR1202+R400型全站仪对受检厂房整体倾斜进行测量。测量结果表明,厂房整体倾斜无明显规律,东西向最大倾斜率为向西倾斜3.87‰,南北向最大倾斜率为向南倾斜5.90‰,部分测点侧向位移超出《建筑地基基础设计规范》(GB50007-2011)中规定的房屋整体倾斜4.0‰的限值


  7.3 厂房相高差检测


  根据实际情况,本次检测采用TCR1202+R400型全站仪,厂房选取设计处于同一水平面的牛腿进行相对高差检测,高于基准点为正值,低于基准点为负值。测量结果表明,房屋局部最大相对倾斜率为3.66‰,个别测点超出《建筑地基基础设计规范》(GB50007-2011)关于同类建筑结构相对倾斜的限值3‰·


  7.4 厂房混凝土强度检测


  按照《钻芯法检测混凝土强度技术规程》(CECS03:2007),在受检厂房主体结构上采用钻芯法取样,测试混凝土的强度。测试结果表明,厂房重灾区混凝土构件强度在21.3MPa~42.0MPa之间,平均值为34.1MPa,混凝土强度等级推定为C20;厂房轻灾区混凝土构件强度在29.3MPa~43.1MPa之间,平均值为37.9MPa,混凝土强度等级推定为C25;厂房未过火区混凝土构件强度在34.0MPa~41.3MPa之间,平均值为37.7MPa,混凝土强度等级推定为C30。检测结果见表7.4。


  8 火灾后损伤分析评估


  8.1 火场温度分析


  重灾区混凝土构件表面基本呈浅灰色,局部呈浅黄色,锤击声音较闷,混凝土粉碎和塌落,面层并伴有贯穿裂缝,表层酥松,依据《火灾后建筑结构鉴定标准》(CECS 252:2009)判定重灾区的最高温度约为>800℃;轻灾区局部混凝土柱呈浅灰,略显粉红,局部脱落、开裂,锤击较响,且留下较明显的痕迹,依据《火灾后建筑结构鉴定标准》(CECS 252:2009)判定轻灾区的最高温度约为300℃~500℃。


  8.2 火灾对混凝土强度影响分析


  根据《火灾后建筑结构鉴定标准》(CECS 252:2009)及有关资料:在高温下及冷却后,混凝土的强度总体上都会有一定程度的降低,温度越高,混凝土强度降低越严重。现场对混凝土构件表面进行锤击或取芯时,受检厂房部分构件面层发生剥落、酥松等现象。测试结果表明,厂房重灾区混凝土构件强度在21.3MPa~42.0MPa之间,平均值为34.1MPa,混凝土强度等级推定为C20;厂房轻灾区混凝土构件强度在29.3MPa~43.1MPa之间,平均值为37.9MPa,混凝土强度等级推定为C25;厂房未过火区混凝土构件强度在34.0MPa~41.3MPa之间,平均值为37.7MPa,混凝土强度等级推定为C30,受灾区域混凝土强度低于设计值。受灾区混凝土检测推定强度均小于未过火区混凝土检测强度及混凝土设计强度。


  8.3 构件鉴定评级


  根据《火灾后建筑结构鉴定标准》(CECS 252:2009),依据构件烧灼损伤、变形、开裂,火灾后构件初步鉴定评级可分为4类(火灾后结构构件损伤状态不评Ⅰ级):


  状态Ⅱa——轻微或未直接遭受烧灼作用,结构材料及结构性能未受或仅受轻微影响,可不采取措施或仅采取提高耐久性的措施。


  状态Ⅱb——轻度烧灼,未对结构材料及结构性能产生明显影响,尚不影响结构安全,应采取耐久性或局部处理外观修复措施。


  状态Ⅲ——中度烧灼,尚未破坏,显著影响结构材料或结构性能,明显变形或开裂,对结构安全性或正常使用性产生不利影响,应采取加固或局部更换措施。


  状态Ⅳ——破坏,火灾中或火灾后结构倒塌或构件塌落;结构严重烧灼损坏、变形损坏或开裂损坏,结构承载能力丧失或大部分丧失,危及结构安全,必须立即采取安全支护、彻底加固或拆除更换措施。


  根据受检区域混凝土构件表面的颜色、锤击反应、剥落情况、火灾后的混凝土强度及承重墙体表面颜色、裂缝对构件进行鉴定评级。


  9 结论与建议


  9.1 结论


  本次受检厂房为一栋五层房屋,其中第一至第四层为钢筋混凝土框架结构房屋,第五层为砖混结构,建造于2011年。该厂房平面呈矩形,东西向长为42.00m,南北向跨度为28.00m,建筑面积约为4704.00m2,该厂房主要火灾前主要作为办公、生产、储备场所使用。通过对上海锦莘仑实业有限公司厂房各构件的检测,得出以下结论:


  (1)根据火灾事故认定书,起火部位处于厂房2楼2~3/C~D轴区域,起火原因为含苯成分可燃气体遇火源爆燃;


  (2)检测结果表明,厂房重灾区构件表面基本呈浅灰色,局部浅黄,并伴有裂缝,主体构件锤击声音局部较闷,其余较响,部分混凝土表面疏松、剥落,填充墙伴有大量破损,面层大面积脱落起皮,表层砂浆疏松等。厂房轻灾区构件表面部分被熏黑,钢筋混凝土构件面层伴有贯通裂缝,主体构件锤击声音基本较响,局部混凝土表面疏松、剥落;填充墙面层轻微脱落等。厂区未过火区粉刷层起皮,局部脱落,墙体具有贯通裂缝,混凝土表面局部被熏黑,其余基本未变色,基本设施基本良好;


  (3)测量结果表明,厂房局部最大相对倾斜率为3.66‰,个别测点超出相关规范要求;


  (4)测量结果表明,厂房整体倾斜无明显规律,东西向最大倾斜率为向西倾斜3.87‰,南北向最大倾斜率为向南倾斜5.90‰,部分测点侧向位移超出相关规范要求;


  (5)钻芯法测试混凝土的强度测试结果表明,厂房重灾区混凝土构件强度在21.2MPa~42.0MPa之间,平均值为34.07MPa,混凝土强度等级推定为C20;厂房轻灾区混凝土构件强度在29.3MPa~43.1MPa之间,平均值为37.9MPa,混凝土强度等级推定为C25;厂房未过火区混凝土构件强度在34.0MPa~41.3MPa之间,平均值为37.7MPa,混凝土强度等级推定为C30;


  (6)依据混凝土表面的颜色、锤击反应、剥落情况、火灾后的混凝土强度以及现场烧毁和残留物残留情况判断,火灾时混凝土表面重灾区最高温度>800℃,轻灾区最高温度约为300℃~500℃;


  (7)根据《火灾后建筑结构鉴定标准》(CECS 252:2009)判定,厂区重灾区的混凝土主体结构构件初步鉴定评级基本为Ⅲ级,墙体基本为IV级;厂区轻灾区的混凝土主体结构构件初步鉴定评级基本为Ⅱb级,墙体基本为Ⅲ级;厂区未过火区区的混凝土主体结构构件初步鉴定评级基本为Ⅱa级,墙体均为Ⅱb级。



联系我们更多
陕西钧测检测技术有限公司
地址:陕西省西安市未央区百寰国际1栋1905室
联系人:武彤
电话:15021135843
网上有害信息举报
x

填写举报信息

提示:请填写您的实名信息,中国114黄页承诺对您的信息进行保密